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Abstract

Betz, Cook, and Hollenbach (2018) offer two notes of caution with regard to spatial
instruments — instrumental variables based on the value of the treatment variable
in other units. Their first point is well taken: such strategies merit special attention
to problems of spillover and interdependent outcomes. Yet their second point, that
for such instruments “the exclusion restriction is, necessarily and by construction,
violated,” is overstated. I show that spatial instruments can be consistent estimators
when they work by serving as a proxy for an unobserved instrument. These results
clarify when such strategies are appropriate and suggest that researchers justify them
by specifying the unobserved instrument that underlies the strategy and presenting
qualitative evidence of its strength.

∗Ph.D. Candidate, Department of Political Science, Yale University (james.sundquist@yale.edu)

mailto:james.sundquist@yale.edu


1 Introduction

It is increasingly common to see researchers construct an instrumental variable (IV) whose

value for each unit i is calculated by summing or otherwise combining the treatment

variable for some set of other units ¬i. Because these instruments are calculated in a

cross-sectional way (most often by averaging the treatment of neighboring units), they are

sometimes called “spatial instruments,” though the term has also been applied to other

instrumental variables with a spatial component. The technique can appear to be a form

of statistical alchemy, creating an instrumental variable out of nothing more than a set of

confounded treatments.

Betz, Cook, and Hollenbach (2018) warn that the technique is indeed too good to be

true, categorically denying the validity of such instruments. They assert that “if [such an

instrument] is strong, it violates the exclusion restriction; if the instrument does not violate

the exclusion restriction, it is irrelevant.” They conclude that spatial instruments “cannot

produce valid inferences.”

In this article, I show that this critique assumes that treatment values form a cyclic

graph; that is, D1 = f (D2) and D2 = f (D1). In such a case, inference is indeed impossible.

However, there is a way for D1 and D2 to be correlated that does not violate the exclusion

restriction: if both are influenced by some causally prior variable Z. I argue that some

spatial instrument strategies implicitly assume the existence of an unobserved instrument

Z, and work by using aggregated treatments as a proxy for Z. I show that this strategy

assumes that the hidden instrument affects groups of units (such as all units in a given

region), and that it uses comparisons between different groups to identify the causal effect

of interest. In other words, if the average levels of the treatment D are shifted across
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regions by Z and only by Z, the average of D in a given region can proxy for the instrument

Z.

In the third section, I introduce a procedure to estimate the value of an unobserved

instrument using confounded treatment variables. I show that, under the assumption that

errors are mean zero in each group, the estimator is unbiased. The proxied instrument

can then be used to estimate a causal effect of interest. The online appendix presents the

results of a simulation study that characterizes the performance of a spatial instruments

strategy.

These results suggest that researchers should think carefully about the causal graph

they claim underlies their spatial instruments strategy, and when possible, support this

claim with qualitative evidence. If causal arrows exist between treatment values, spatial

instruments are unlikely to be helpful. If the underlying causal diagram presumes an unob-

served instrument, spatial instruments are potentially useful, and all the more convincing if

additional evidence attests to the existence and exogeneity of this unobserved instrument.

2 When Spatial Instruments Can and Cannot Be Used

The core critique leveled by Betz et al. is that “feedback from the endogenous predictor

to the instrument makes the instrument a function of the source of endogeneity — that

is, it makes the instrument itself endogenous.” While they make use of causal diagrams

elsewhere, this key section restricts itself to systems of equations. The use of an equality

sign rather than a directed relationship obscures the multiple ways in which treatment vari-

ables can be causally related, with important consequences for what a spatial instrument

is capturing.
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If the language of “from. . . to” is interpreted in a causal sense, simultaneity bias does

indeed frustrate any attempt at inference. Figure 1 makes this immediately apparent: a

cycle exists between D1 and D2. Furthermore, no instrumental variable appears at all in

the graph! Because there is no underlying natural experiment, there is no way to separate

exogenous variation in D from its endogenous component.

Figure 1: Cyclic graph
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Figure 2, however, presents an alternative situation in which D1 and D2 are correlated,

but no feedback loop exists: a classic instrumental variable, Z, affects outcomes through

and only through treatment. If Z were observed, it could be used in a traditional IV setup.

Yet if it is unobserved, spatial instruments can use average differences in D to infer dif-

ferences in Z. Crucially, the strategy can only work if this hidden instrument is the only

unobserved cause each unit has in common.

The simplest application of this insight would involve cross-sectional data, in which

Z takes different values in different regions. The mean of D for all other units in a given

region would proxy for the unobserved regional Z, and cross-regional variation in the

spatial instrument would identify the effect of D on Y . This technique has seen some use

in biostatistics, where varying regional preferences for a particular medical procedure have
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been used as an instrument to evaluate the procedure’s effectiveness (Baiocchi, Cheng, and

Small, 2014, p. 2303).

Alternatively, Z could vary across time periods instead of across regions. Assuming

that the hidden instrument is the only unobserved factor shifting average levels of treat-

ment over time, these over-time changes can be attributed to exogenous variation in Z,

and used for causal identification. As the following section explains in more detail, this

assumption poses an obstacle for spatial instruments strategies, but still allows for many

types of confounding ruled out by other inferential strategies, such as two-way fixed ef-

fects. In circumstances where it holds, spatial instruments are in fact valid. The key is to

recognize that they are not creating an instrument where there was none, but revealing the

shape of one that was already there, though unobserved.

3 Spatial Instruments as a Proxying Strategy

I begin with the cross-sectional case. Given the system of equations with k regions indexed

by j, each with n units indexed by i:

Di = β1Zi j +ui (1)

Yi = β2Di + εi (2)

The estimand of interest is β2, but let us assume that estimation via ordinary least squares

is confounded by correlation between Di and εi. Zi j operates at the regional level, taking

the same value for every unit in a given region j, and satisfies the two requirements of

an instrument: Cov(Zi j,εi) = 0 and Cov(Zi j,Di) 6= 0. However, it is unobserved. Under
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the additional assumption that errors in equation (1) are mean zero within each region,

E[ui|Zi j] = 0, I show that the instrument can be proxied by a spatial instrument: the average

treatment of all other units in the region.

Proposition. Define γi as ∑
¬i Di (where ¬i refers only to units in i’s same region)

If E[ui|Zi j] = 0, then γi
n−1 is an unbiased estimator for β1Zi j.

Proof.

γi =
¬i

∑Di

γi =
¬i

∑β1Zi j +
¬i

∑uit

E[γi] = (n−1)(β1)E[Zi j]+ (n−1)E[ui]

E[γi]

n−1
= β1E[Zi j]

We can then use γi as a proxy for the unobserved instrument in a conventional IV setup,

where the second equality follows from the fact that Zi j does not vary within regions, and

so Zi j = E[Zi j].

Cov(γi,Yi)

Cov(γi,Di)
=

β1Cov(E[Zi j],Yi)

β1Cov(E[Zi j],Di)
=

Cov(Zi j,Yi)

Cov(Zi j,Di)
= β2

This approach to spatial instruments makes three things clear: first identification of β2

depends on regional variation in the hidden instrument Z. Because we can only infer Z
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at the level of the region, it is essential to observe multiple regions with varying levels of

Z. Second, regional differences in average treatment D that remain after controlling for

any observable confounders must be attributable to Z. Regional fixed effects are impos-

sible because they would be perfectly collinear with Zi j. Third, despite this limitation,

spatial instruments greatly narrow the scope of threats to inference. Whereas controlling

strategies block specific confounders but remain vulnerable to all others, this strategy can

overcome all forms of confounding except for the specific problem of unobserved differ-

ences between regions.

This approach can also be applied to panel data. Just as the cross-sectional version

assumed that the unobserved instrument explained cross-regional variation, the panel data

version assumes that the instrument shifts average levels of treatment over time. Panel

data have the additional advantage of being able to condition on a unit fixed effect ai to

satisfy the conditional independence assumption E[uit |ai,Zit ] = 0.

While this procedure is consistent, it suffers from a problem in samples with few

groups: within each group (either region or year), the unit with the highest treatment

value will have the smallest γi, while the largest γi will belong to the unit with the low-

est treatment value. The resulting negative correlation between γi and Di within groups

weakens the instrument, which is motivated by positive correlation with Di across groups.

This problem is particularly acute in situations with few groups, where there is less cross-

group variation to compensate for the problem. Figure 3 illustrates these cross-cutting

correlations. With only two small groups (the filled circles), the correlation between γi

and Di is weak. Adding more units to these two groups (denoted by hollow circles) does

not address this problem — though by shrinking the variance of E[u|Zi j], it does reduce
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the degree to which random variation can violate the assumption E[ui|Zi j] = 0. Additional

groups (denoted by red circles) are necessary to strengthen the correlation between the

instrument and the treatment variable.1 As a consequence of this quirk of spatial instru-

ments, researchers should try to include as many groups of units as possible and report the

first-stage F-statistic to confirm that the instrument is sufficiently strong.

Di

γi

Figure 3: Adding additional observations to the initial two groups (open circles) does not
strengthen the correlation between γi and Di across groups, but including more groups
with varying levels of Z (red dots) does.

Another solution to the problem of a weak spatial instrument is to introduce a degree

of bias by including unit i’s treatment value in the construction of its instrument. This

modified instrument Γi = ∑
i Di or Γit = ∑

i Dit will take the same value for every unit

in a group. Simulations confirm that this procedure enjoys lower variance in situations

with few groups, at the cost of bias from including a unit’s own confounded treatment in
1Speaking more generally, the partial correlation between the two variables after partialling out any other

covariates.
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its instrument. This bias also shrinks as groups contain more units, because each unit’s

treatment exerts less effect over the group average. Yet because bias is still unwelcome

as a source of error, researchers can take advantage of the estimators’ complementary

qualities and use both. If the results substantively agree, there is likely to be enough

across-group variation to ensure a strong instrument when using γi and enough units per

group to shrink bias when using Γi. If they return meaningfully different results, at least

one of the problems is severe. Because having few units per group compromises the key

assumption of errors within each group summing to zero, it poses problems for both γi and

Γi. In the case of few groups with many units, Γi may be accurate enough to be useful. In

the online appendix, a simulation study provides evidence in support of these assertions.

Finally, some readers may wonder: given the strong assumption that cross-group varia-

tion is driven by an exogenous instrument, why not simply average treatment and outcomes

by group and estimate β2 using OLS at the group level? I believe that there are at least

three reasons to prefer a spatial instruments approach. First, even when clustering standard

errors by group to account for co-determined treatment status, the spatial instruments ap-

proach can return more precise estimates by drawing on a larger number of observations.

Second, the instrumental variables framework encourages more attention to the underly-

ing natural experiment and questions of research design. Most important, however, is the

fact that spatial instruments can be useful even when this assumption does not hold for all

units. An instructive example comes from Dube and Naidu (2015). Studying the effect

of US military aid on paramilitary violence in Colombia, they reason that this aid is in-

fluenced by fluctuations in the Pentagon’s total annual military assistance budget, but as a

small percentage of the overall budget, is unlikely to drive these fluctuations. The spatial
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instrument is particularly defensible in this single-unit case. An in-between approach is

also possible: if the assumption that budget fluctuations are exogenous is appropriate for

some countries other than Colombia, but not appropriate for another set of countries (e.g.,

Iraq and Afghanistan in Dube and Naidu’s case), all units’ treatment information can be

used in constructing the instrument, but only the outcomes for countries that satisfy the

assumption used to estimate β2.

4 Discussion

What does this mean for the use of spatial instruments in social science? Researchers who

hope to employ such a strategy must be explicit about what hidden instrument underlies

their study. They cannot fall victim to the fallacy of composition that can occur when

checking IV assumptions one-by-one, and report a strong first stage for a spatial instru-

ment while arguing that spillover is unlikely. Together, these facts suggest that treatment

assignments share a causal ancestor. Theory and qualitative evidence should support this

ancestor’s existence and exogeneity. If it is not exogenous, it is not a valid instrument.

Among the papers cited by Betz et al., two attempts to instrument for democracy prove

illuminative. Ansell (2008) uses regional Polity scores as an instrument for each coun-

try’s own Polity score, without attention to what causes these measures to be correlated,

and why this cause should be considered exogenous. This is an example of checking IV

assumptions one-by-one, without developing a theory of the underlying identifying vari-

ation. Acemoglu et al. (2019) on the other hand, use regional waves of democratization

as an instrument for democracy. By focusing on waves, readers can scrutinize whether the

identifying variation satisfies the independence assumption.
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In conclusion, spatial instruments cannot be used to create an instrument where none

exists, but can be used to proxy for one that is unobserved. In such cases, spatial instru-

ments can in fact produce valid inferences. However, spatial instruments rule out the use

of region or time fixed effects, requiring strong assumptions about the absence of con-

founders at the group level. Thus, spatial instruments demand more, not less, substantive

knowledge of causal processes.
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